\(\int \frac {c+d x}{(a+a \sin (e+f x))^2} \, dx\) [114]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [C] (verified)
   Fricas [A] (verification not implemented)
   Sympy [B] (verification not implemented)
   Maxima [B] (verification not implemented)
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 18, antiderivative size = 148 \[ \int \frac {c+d x}{(a+a \sin (e+f x))^2} \, dx=-\frac {(c+d x) \cot \left (\frac {e}{2}+\frac {\pi }{4}+\frac {f x}{2}\right )}{3 a^2 f}-\frac {d \csc ^2\left (\frac {e}{2}+\frac {\pi }{4}+\frac {f x}{2}\right )}{6 a^2 f^2}-\frac {(c+d x) \cot \left (\frac {e}{2}+\frac {\pi }{4}+\frac {f x}{2}\right ) \csc ^2\left (\frac {e}{2}+\frac {\pi }{4}+\frac {f x}{2}\right )}{6 a^2 f}+\frac {2 d \log \left (\sin \left (\frac {e}{2}+\frac {\pi }{4}+\frac {f x}{2}\right )\right )}{3 a^2 f^2} \]

[Out]

-1/3*(d*x+c)*cot(1/2*e+1/4*Pi+1/2*f*x)/a^2/f-1/6*d*csc(1/2*e+1/4*Pi+1/2*f*x)^2/a^2/f^2-1/6*(d*x+c)*cot(1/2*e+1
/4*Pi+1/2*f*x)*csc(1/2*e+1/4*Pi+1/2*f*x)^2/a^2/f+2/3*d*ln(sin(1/2*e+1/4*Pi+1/2*f*x))/a^2/f^2

Rubi [A] (verified)

Time = 0.06 (sec) , antiderivative size = 148, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {3399, 4270, 4269, 3556} \[ \int \frac {c+d x}{(a+a \sin (e+f x))^2} \, dx=-\frac {(c+d x) \cot \left (\frac {e}{2}+\frac {f x}{2}+\frac {\pi }{4}\right )}{3 a^2 f}-\frac {(c+d x) \cot \left (\frac {e}{2}+\frac {f x}{2}+\frac {\pi }{4}\right ) \csc ^2\left (\frac {e}{2}+\frac {f x}{2}+\frac {\pi }{4}\right )}{6 a^2 f}-\frac {d \csc ^2\left (\frac {e}{2}+\frac {f x}{2}+\frac {\pi }{4}\right )}{6 a^2 f^2}+\frac {2 d \log \left (\sin \left (\frac {e}{2}+\frac {f x}{2}+\frac {\pi }{4}\right )\right )}{3 a^2 f^2} \]

[In]

Int[(c + d*x)/(a + a*Sin[e + f*x])^2,x]

[Out]

-1/3*((c + d*x)*Cot[e/2 + Pi/4 + (f*x)/2])/(a^2*f) - (d*Csc[e/2 + Pi/4 + (f*x)/2]^2)/(6*a^2*f^2) - ((c + d*x)*
Cot[e/2 + Pi/4 + (f*x)/2]*Csc[e/2 + Pi/4 + (f*x)/2]^2)/(6*a^2*f) + (2*d*Log[Sin[e/2 + Pi/4 + (f*x)/2]])/(3*a^2
*f^2)

Rule 3399

Int[((c_.) + (d_.)*(x_))^(m_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[(2*a)^n, Int[(c
 + d*x)^m*Sin[(1/2)*(e + Pi*(a/(2*b))) + f*(x/2)]^(2*n), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[a^2
- b^2, 0] && IntegerQ[n] && (GtQ[n, 0] || IGtQ[m, 0])

Rule 3556

Int[tan[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-Log[RemoveContent[Cos[c + d*x], x]]/d, x] /; FreeQ[{c, d}, x]

Rule 4269

Int[csc[(e_.) + (f_.)*(x_)]^2*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(-(c + d*x)^m)*(Cot[e + f*x]/f), x
] + Dist[d*(m/f), Int[(c + d*x)^(m - 1)*Cot[e + f*x], x], x] /; FreeQ[{c, d, e, f}, x] && GtQ[m, 0]

Rule 4270

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(n_)*((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(-b^2)*(c + d*x)*Cot[e + f*x]
*((b*Csc[e + f*x])^(n - 2)/(f*(n - 1))), x] + (Dist[b^2*((n - 2)/(n - 1)), Int[(c + d*x)*(b*Csc[e + f*x])^(n -
 2), x], x] - Simp[b^2*d*((b*Csc[e + f*x])^(n - 2)/(f^2*(n - 1)*(n - 2))), x]) /; FreeQ[{b, c, d, e, f}, x] &&
 GtQ[n, 1] && NeQ[n, 2]

Rubi steps \begin{align*} \text {integral}& = \frac {\int (c+d x) \csc ^4\left (\frac {1}{2} \left (e+\frac {\pi }{2}\right )+\frac {f x}{2}\right ) \, dx}{4 a^2} \\ & = -\frac {d \csc ^2\left (\frac {e}{2}+\frac {\pi }{4}+\frac {f x}{2}\right )}{6 a^2 f^2}-\frac {(c+d x) \cot \left (\frac {e}{2}+\frac {\pi }{4}+\frac {f x}{2}\right ) \csc ^2\left (\frac {e}{2}+\frac {\pi }{4}+\frac {f x}{2}\right )}{6 a^2 f}+\frac {\int (c+d x) \csc ^2\left (\frac {e}{2}+\frac {\pi }{4}+\frac {f x}{2}\right ) \, dx}{6 a^2} \\ & = -\frac {(c+d x) \cot \left (\frac {e}{2}+\frac {\pi }{4}+\frac {f x}{2}\right )}{3 a^2 f}-\frac {d \csc ^2\left (\frac {e}{2}+\frac {\pi }{4}+\frac {f x}{2}\right )}{6 a^2 f^2}-\frac {(c+d x) \cot \left (\frac {e}{2}+\frac {\pi }{4}+\frac {f x}{2}\right ) \csc ^2\left (\frac {e}{2}+\frac {\pi }{4}+\frac {f x}{2}\right )}{6 a^2 f}+\frac {d \int \cot \left (\frac {e}{2}+\frac {\pi }{4}+\frac {f x}{2}\right ) \, dx}{3 a^2 f} \\ & = -\frac {(c+d x) \cot \left (\frac {e}{2}+\frac {\pi }{4}+\frac {f x}{2}\right )}{3 a^2 f}-\frac {d \csc ^2\left (\frac {e}{2}+\frac {\pi }{4}+\frac {f x}{2}\right )}{6 a^2 f^2}-\frac {(c+d x) \cot \left (\frac {e}{2}+\frac {\pi }{4}+\frac {f x}{2}\right ) \csc ^2\left (\frac {e}{2}+\frac {\pi }{4}+\frac {f x}{2}\right )}{6 a^2 f}+\frac {2 d \log \left (\sin \left (\frac {e}{2}+\frac {\pi }{4}+\frac {f x}{2}\right )\right )}{3 a^2 f^2} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.72 (sec) , antiderivative size = 225, normalized size of antiderivative = 1.52 \[ \int \frac {c+d x}{(a+a \sin (e+f x))^2} \, dx=-\frac {\left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right ) \left (d \cos \left (\frac {1}{2} (e+f x)\right ) \left (2+3 e+3 f x-6 \log \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )\right )+\cos \left (\frac {3}{2} (e+f x)\right ) \left (-d e+2 c f+d f x+2 d \log \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )\right )+2 \left (d+2 d e-3 c f-d f x+d \cos (e+f x) \left (e+f x-2 \log \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )\right )-4 d \log \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )\right ) \sin \left (\frac {1}{2} (e+f x)\right )\right )}{6 a^2 f^2 (1+\sin (e+f x))^2} \]

[In]

Integrate[(c + d*x)/(a + a*Sin[e + f*x])^2,x]

[Out]

-1/6*((Cos[(e + f*x)/2] + Sin[(e + f*x)/2])*(d*Cos[(e + f*x)/2]*(2 + 3*e + 3*f*x - 6*Log[Cos[(e + f*x)/2] + Si
n[(e + f*x)/2]]) + Cos[(3*(e + f*x))/2]*(-(d*e) + 2*c*f + d*f*x + 2*d*Log[Cos[(e + f*x)/2] + Sin[(e + f*x)/2]]
) + 2*(d + 2*d*e - 3*c*f - d*f*x + d*Cos[e + f*x]*(e + f*x - 2*Log[Cos[(e + f*x)/2] + Sin[(e + f*x)/2]]) - 4*d
*Log[Cos[(e + f*x)/2] + Sin[(e + f*x)/2]])*Sin[(e + f*x)/2]))/(a^2*f^2*(1 + Sin[e + f*x])^2)

Maple [C] (verified)

Result contains complex when optimal does not.

Time = 0.63 (sec) , antiderivative size = 132, normalized size of antiderivative = 0.89

method result size
risch \(-\frac {2 i d x}{3 a^{2} f}-\frac {2 i d e}{3 a^{2} f^{2}}-\frac {2 i \left (i d f x +3 d f x \,{\mathrm e}^{i \left (f x +e \right )}+i c f +i d \,{\mathrm e}^{i \left (f x +e \right )}+3 c f \,{\mathrm e}^{i \left (f x +e \right )}+d \,{\mathrm e}^{2 i \left (f x +e \right )}\right )}{3 f^{2} \left ({\mathrm e}^{i \left (f x +e \right )}+i\right )^{3} a^{2}}+\frac {2 d \ln \left ({\mathrm e}^{i \left (f x +e \right )}+i\right )}{3 a^{2} f^{2}}\) \(132\)
parallelrisch \(\frac {-d \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right )^{3} \ln \left (\sec ^{2}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )+2 d \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right )^{3} \ln \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right )+2 x \left (\tan ^{3}\left (\frac {f x}{2}+\frac {e}{2}\right )\right ) d f +\left (-6 c f +2 d \right ) \left (\tan ^{2}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )+\left (-6 c f +2 d \right ) \tan \left (\frac {f x}{2}+\frac {e}{2}\right )-4 \left (\frac {d x}{2}+c \right ) f}{3 f^{2} a^{2} \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right )^{3}}\) \(142\)
norman \(\frac {-\frac {4 c}{3 f a}-\frac {2 d x}{3 f a}+\frac {\left (-6 c f +2 d \right ) \tan \left (\frac {f x}{2}+\frac {e}{2}\right )}{3 a \,f^{2}}+\frac {\left (-6 c f +2 d \right ) \left (\tan ^{2}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{3 a \,f^{2}}+\frac {2 d x \left (\tan ^{3}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{3 f a}}{a \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right )^{3}}+\frac {2 d \ln \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right )}{3 a^{2} f^{2}}-\frac {d \ln \left (1+\tan ^{2}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{3 a^{2} f^{2}}\) \(156\)
default \(-\frac {2 \left (-\frac {c \left (\frac {2}{\left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right )^{2}}-\frac {4}{3 \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right )^{3}}-\frac {2}{\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1}\right )}{2 f}-\frac {-\frac {d x}{3 f}+\frac {d \tan \left (\frac {f x}{2}+\frac {e}{2}\right )}{3 f^{2}}+\frac {d \left (\tan ^{2}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{3 f^{2}}+\frac {d x \left (\tan ^{3}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{3 f}}{\left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right )^{3}}-\frac {d \ln \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right )}{3 f^{2}}+\frac {d \ln \left (1+\tan ^{2}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{6 f^{2}}\right )}{a^{2}}\) \(170\)

[In]

int((d*x+c)/(a+a*sin(f*x+e))^2,x,method=_RETURNVERBOSE)

[Out]

-2/3*I*d/a^2/f*x-2/3*I*d/a^2/f^2*e-2/3*I*(I*d*f*x+3*d*f*x*exp(I*(f*x+e))+I*c*f+I*d*exp(I*(f*x+e))+3*c*f*exp(I*
(f*x+e))+d*exp(2*I*(f*x+e)))/f^2/(exp(I*(f*x+e))+I)^3/a^2+2/3*d/a^2/f^2*ln(exp(I*(f*x+e))+I)

Fricas [A] (verification not implemented)

none

Time = 0.32 (sec) , antiderivative size = 204, normalized size of antiderivative = 1.38 \[ \int \frac {c+d x}{(a+a \sin (e+f x))^2} \, dx=\frac {d f x + {\left (d f x + c f\right )} \cos \left (f x + e\right )^{2} + c f + {\left (2 \, d f x + 2 \, c f + d\right )} \cos \left (f x + e\right ) + {\left (d \cos \left (f x + e\right )^{2} - d \cos \left (f x + e\right ) - {\left (d \cos \left (f x + e\right ) + 2 \, d\right )} \sin \left (f x + e\right ) - 2 \, d\right )} \log \left (\sin \left (f x + e\right ) + 1\right ) - {\left (d f x + c f - {\left (d f x + c f\right )} \cos \left (f x + e\right ) - d\right )} \sin \left (f x + e\right ) + d}{3 \, {\left (a^{2} f^{2} \cos \left (f x + e\right )^{2} - a^{2} f^{2} \cos \left (f x + e\right ) - 2 \, a^{2} f^{2} - {\left (a^{2} f^{2} \cos \left (f x + e\right ) + 2 \, a^{2} f^{2}\right )} \sin \left (f x + e\right )\right )}} \]

[In]

integrate((d*x+c)/(a+a*sin(f*x+e))^2,x, algorithm="fricas")

[Out]

1/3*(d*f*x + (d*f*x + c*f)*cos(f*x + e)^2 + c*f + (2*d*f*x + 2*c*f + d)*cos(f*x + e) + (d*cos(f*x + e)^2 - d*c
os(f*x + e) - (d*cos(f*x + e) + 2*d)*sin(f*x + e) - 2*d)*log(sin(f*x + e) + 1) - (d*f*x + c*f - (d*f*x + c*f)*
cos(f*x + e) - d)*sin(f*x + e) + d)/(a^2*f^2*cos(f*x + e)^2 - a^2*f^2*cos(f*x + e) - 2*a^2*f^2 - (a^2*f^2*cos(
f*x + e) + 2*a^2*f^2)*sin(f*x + e))

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1336 vs. \(2 (122) = 244\).

Time = 0.82 (sec) , antiderivative size = 1336, normalized size of antiderivative = 9.03 \[ \int \frac {c+d x}{(a+a \sin (e+f x))^2} \, dx=\text {Too large to display} \]

[In]

integrate((d*x+c)/(a+a*sin(f*x+e))**2,x)

[Out]

Piecewise((-6*c*f*tan(e/2 + f*x/2)**2/(3*a**2*f**2*tan(e/2 + f*x/2)**3 + 9*a**2*f**2*tan(e/2 + f*x/2)**2 + 9*a
**2*f**2*tan(e/2 + f*x/2) + 3*a**2*f**2) - 6*c*f*tan(e/2 + f*x/2)/(3*a**2*f**2*tan(e/2 + f*x/2)**3 + 9*a**2*f*
*2*tan(e/2 + f*x/2)**2 + 9*a**2*f**2*tan(e/2 + f*x/2) + 3*a**2*f**2) - 4*c*f/(3*a**2*f**2*tan(e/2 + f*x/2)**3
+ 9*a**2*f**2*tan(e/2 + f*x/2)**2 + 9*a**2*f**2*tan(e/2 + f*x/2) + 3*a**2*f**2) + 2*d*f*x*tan(e/2 + f*x/2)**3/
(3*a**2*f**2*tan(e/2 + f*x/2)**3 + 9*a**2*f**2*tan(e/2 + f*x/2)**2 + 9*a**2*f**2*tan(e/2 + f*x/2) + 3*a**2*f**
2) - 2*d*f*x/(3*a**2*f**2*tan(e/2 + f*x/2)**3 + 9*a**2*f**2*tan(e/2 + f*x/2)**2 + 9*a**2*f**2*tan(e/2 + f*x/2)
 + 3*a**2*f**2) + 2*d*log(tan(e/2 + f*x/2) + 1)*tan(e/2 + f*x/2)**3/(3*a**2*f**2*tan(e/2 + f*x/2)**3 + 9*a**2*
f**2*tan(e/2 + f*x/2)**2 + 9*a**2*f**2*tan(e/2 + f*x/2) + 3*a**2*f**2) + 6*d*log(tan(e/2 + f*x/2) + 1)*tan(e/2
 + f*x/2)**2/(3*a**2*f**2*tan(e/2 + f*x/2)**3 + 9*a**2*f**2*tan(e/2 + f*x/2)**2 + 9*a**2*f**2*tan(e/2 + f*x/2)
 + 3*a**2*f**2) + 6*d*log(tan(e/2 + f*x/2) + 1)*tan(e/2 + f*x/2)/(3*a**2*f**2*tan(e/2 + f*x/2)**3 + 9*a**2*f**
2*tan(e/2 + f*x/2)**2 + 9*a**2*f**2*tan(e/2 + f*x/2) + 3*a**2*f**2) + 2*d*log(tan(e/2 + f*x/2) + 1)/(3*a**2*f*
*2*tan(e/2 + f*x/2)**3 + 9*a**2*f**2*tan(e/2 + f*x/2)**2 + 9*a**2*f**2*tan(e/2 + f*x/2) + 3*a**2*f**2) - d*log
(tan(e/2 + f*x/2)**2 + 1)*tan(e/2 + f*x/2)**3/(3*a**2*f**2*tan(e/2 + f*x/2)**3 + 9*a**2*f**2*tan(e/2 + f*x/2)*
*2 + 9*a**2*f**2*tan(e/2 + f*x/2) + 3*a**2*f**2) - 3*d*log(tan(e/2 + f*x/2)**2 + 1)*tan(e/2 + f*x/2)**2/(3*a**
2*f**2*tan(e/2 + f*x/2)**3 + 9*a**2*f**2*tan(e/2 + f*x/2)**2 + 9*a**2*f**2*tan(e/2 + f*x/2) + 3*a**2*f**2) - 3
*d*log(tan(e/2 + f*x/2)**2 + 1)*tan(e/2 + f*x/2)/(3*a**2*f**2*tan(e/2 + f*x/2)**3 + 9*a**2*f**2*tan(e/2 + f*x/
2)**2 + 9*a**2*f**2*tan(e/2 + f*x/2) + 3*a**2*f**2) - d*log(tan(e/2 + f*x/2)**2 + 1)/(3*a**2*f**2*tan(e/2 + f*
x/2)**3 + 9*a**2*f**2*tan(e/2 + f*x/2)**2 + 9*a**2*f**2*tan(e/2 + f*x/2) + 3*a**2*f**2) + 2*d*tan(e/2 + f*x/2)
**2/(3*a**2*f**2*tan(e/2 + f*x/2)**3 + 9*a**2*f**2*tan(e/2 + f*x/2)**2 + 9*a**2*f**2*tan(e/2 + f*x/2) + 3*a**2
*f**2) + 2*d*tan(e/2 + f*x/2)/(3*a**2*f**2*tan(e/2 + f*x/2)**3 + 9*a**2*f**2*tan(e/2 + f*x/2)**2 + 9*a**2*f**2
*tan(e/2 + f*x/2) + 3*a**2*f**2), Ne(f, 0)), ((c*x + d*x**2/2)/(a*sin(e) + a)**2, True))

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 910 vs. \(2 (110) = 220\).

Time = 0.22 (sec) , antiderivative size = 910, normalized size of antiderivative = 6.15 \[ \int \frac {c+d x}{(a+a \sin (e+f x))^2} \, dx=\text {Too large to display} \]

[In]

integrate((d*x+c)/(a+a*sin(f*x+e))^2,x, algorithm="maxima")

[Out]

1/3*(2*d*e*(3*sin(f*x + e)/(cos(f*x + e) + 1) + 3*sin(f*x + e)^2/(cos(f*x + e) + 1)^2 + 2)/(a^2*f + 3*a^2*f*si
n(f*x + e)/(cos(f*x + e) + 1) + 3*a^2*f*sin(f*x + e)^2/(cos(f*x + e) + 1)^2 + a^2*f*sin(f*x + e)^3/(cos(f*x +
e) + 1)^3) + (2*(f*x + 3*(f*x + e)*sin(f*x + e) + e + cos(f*x + e) + sin(2*f*x + 2*e))*cos(3*f*x + 3*e) - 2*(9
*(f*x + e)*cos(f*x + e) - 6*sin(f*x + e) - 1)*cos(2*f*x + 2*e) - 6*cos(2*f*x + 2*e)^2 - 6*cos(f*x + e)^2 - (6*
(cos(f*x + e) + sin(2*f*x + 2*e))*cos(3*f*x + 3*e) - cos(3*f*x + 3*e)^2 + 6*(3*sin(f*x + e) + 1)*cos(2*f*x + 2
*e) - 9*cos(2*f*x + 2*e)^2 - 9*cos(f*x + e)^2 - 2*(3*cos(2*f*x + 2*e) - 3*sin(f*x + e) - 1)*sin(3*f*x + 3*e) -
 sin(3*f*x + 3*e)^2 - 18*cos(f*x + e)*sin(2*f*x + 2*e) - 9*sin(2*f*x + 2*e)^2 - 9*sin(f*x + e)^2 - 6*sin(f*x +
 e) - 1)*log(cos(f*x + e)^2 + sin(f*x + e)^2 + 2*sin(f*x + e) + 1) - 2*(3*(f*x + e)*cos(f*x + e) + cos(2*f*x +
 2*e) - sin(f*x + e))*sin(3*f*x + 3*e) - 6*(f*x + 3*(f*x + e)*sin(f*x + e) + e + 2*cos(f*x + e))*sin(2*f*x + 2
*e) - 6*sin(2*f*x + 2*e)^2 - 6*sin(f*x + e)^2 - 2*sin(f*x + e))*d/(a^2*f*cos(3*f*x + 3*e)^2 + 9*a^2*f*cos(2*f*
x + 2*e)^2 + 9*a^2*f*cos(f*x + e)^2 + a^2*f*sin(3*f*x + 3*e)^2 + 18*a^2*f*cos(f*x + e)*sin(2*f*x + 2*e) + 9*a^
2*f*sin(2*f*x + 2*e)^2 + 9*a^2*f*sin(f*x + e)^2 + 6*a^2*f*sin(f*x + e) + a^2*f - 6*(a^2*f*cos(f*x + e) + a^2*f
*sin(2*f*x + 2*e))*cos(3*f*x + 3*e) - 6*(3*a^2*f*sin(f*x + e) + a^2*f)*cos(2*f*x + 2*e) + 2*(3*a^2*f*cos(2*f*x
 + 2*e) - 3*a^2*f*sin(f*x + e) - a^2*f)*sin(3*f*x + 3*e)) - 2*c*(3*sin(f*x + e)/(cos(f*x + e) + 1) + 3*sin(f*x
 + e)^2/(cos(f*x + e) + 1)^2 + 2)/(a^2 + 3*a^2*sin(f*x + e)/(cos(f*x + e) + 1) + 3*a^2*sin(f*x + e)^2/(cos(f*x
 + e) + 1)^2 + a^2*sin(f*x + e)^3/(cos(f*x + e) + 1)^3))/f

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 2486 vs. \(2 (110) = 220\).

Time = 0.73 (sec) , antiderivative size = 2486, normalized size of antiderivative = 16.80 \[ \int \frac {c+d x}{(a+a \sin (e+f x))^2} \, dx=\text {Too large to display} \]

[In]

integrate((d*x+c)/(a+a*sin(f*x+e))^2,x, algorithm="giac")

[Out]

-1/3*(2*d*f*x*tan(1/2*f*x)^3*tan(1/2*e)^3 + 2*c*f*tan(1/2*f*x)^3*tan(1/2*e)^3 - d*log(2*(tan(1/2*f*x)^2*tan(1/
2*e)^2 - 2*tan(1/2*f*x)^2*tan(1/2*e) - 2*tan(1/2*f*x)*tan(1/2*e)^2 + tan(1/2*f*x)^2 + tan(1/2*e)^2 + 2*tan(1/2
*f*x) + 2*tan(1/2*e) + 1)/(tan(1/2*f*x)^2*tan(1/2*e)^2 + tan(1/2*f*x)^2 + tan(1/2*e)^2 + 1))*tan(1/2*f*x)^3*ta
n(1/2*e)^3 - 6*d*f*x*tan(1/2*f*x)^2*tan(1/2*e)^2 + 3*d*log(2*(tan(1/2*f*x)^2*tan(1/2*e)^2 - 2*tan(1/2*f*x)^2*t
an(1/2*e) - 2*tan(1/2*f*x)*tan(1/2*e)^2 + tan(1/2*f*x)^2 + tan(1/2*e)^2 + 2*tan(1/2*f*x) + 2*tan(1/2*e) + 1)/(
tan(1/2*f*x)^2*tan(1/2*e)^2 + tan(1/2*f*x)^2 + tan(1/2*e)^2 + 1))*tan(1/2*f*x)^3*tan(1/2*e)^2 + 3*d*log(2*(tan
(1/2*f*x)^2*tan(1/2*e)^2 - 2*tan(1/2*f*x)^2*tan(1/2*e) - 2*tan(1/2*f*x)*tan(1/2*e)^2 + tan(1/2*f*x)^2 + tan(1/
2*e)^2 + 2*tan(1/2*f*x) + 2*tan(1/2*e) + 1)/(tan(1/2*f*x)^2*tan(1/2*e)^2 + tan(1/2*f*x)^2 + tan(1/2*e)^2 + 1))
*tan(1/2*f*x)^2*tan(1/2*e)^3 + d*tan(1/2*f*x)^3*tan(1/2*e)^3 + 2*d*f*x*tan(1/2*f*x)^3 + 6*d*f*x*tan(1/2*f*x)^2
*tan(1/2*e) - 3*d*log(2*(tan(1/2*f*x)^2*tan(1/2*e)^2 - 2*tan(1/2*f*x)^2*tan(1/2*e) - 2*tan(1/2*f*x)*tan(1/2*e)
^2 + tan(1/2*f*x)^2 + tan(1/2*e)^2 + 2*tan(1/2*f*x) + 2*tan(1/2*e) + 1)/(tan(1/2*f*x)^2*tan(1/2*e)^2 + tan(1/2
*f*x)^2 + tan(1/2*e)^2 + 1))*tan(1/2*f*x)^3*tan(1/2*e) + 6*d*f*x*tan(1/2*f*x)*tan(1/2*e)^2 - 6*c*f*tan(1/2*f*x
)^2*tan(1/2*e)^2 - 3*d*log(2*(tan(1/2*f*x)^2*tan(1/2*e)^2 - 2*tan(1/2*f*x)^2*tan(1/2*e) - 2*tan(1/2*f*x)*tan(1
/2*e)^2 + tan(1/2*f*x)^2 + tan(1/2*e)^2 + 2*tan(1/2*f*x) + 2*tan(1/2*e) + 1)/(tan(1/2*f*x)^2*tan(1/2*e)^2 + ta
n(1/2*f*x)^2 + tan(1/2*e)^2 + 1))*tan(1/2*f*x)^2*tan(1/2*e)^2 - d*tan(1/2*f*x)^3*tan(1/2*e)^2 + 2*d*f*x*tan(1/
2*e)^3 - 3*d*log(2*(tan(1/2*f*x)^2*tan(1/2*e)^2 - 2*tan(1/2*f*x)^2*tan(1/2*e) - 2*tan(1/2*f*x)*tan(1/2*e)^2 +
tan(1/2*f*x)^2 + tan(1/2*e)^2 + 2*tan(1/2*f*x) + 2*tan(1/2*e) + 1)/(tan(1/2*f*x)^2*tan(1/2*e)^2 + tan(1/2*f*x)
^2 + tan(1/2*e)^2 + 1))*tan(1/2*f*x)*tan(1/2*e)^3 - d*tan(1/2*f*x)^2*tan(1/2*e)^3 + 2*c*f*tan(1/2*f*x)^3 + d*l
og(2*(tan(1/2*f*x)^2*tan(1/2*e)^2 - 2*tan(1/2*f*x)^2*tan(1/2*e) - 2*tan(1/2*f*x)*tan(1/2*e)^2 + tan(1/2*f*x)^2
 + tan(1/2*e)^2 + 2*tan(1/2*f*x) + 2*tan(1/2*e) + 1)/(tan(1/2*f*x)^2*tan(1/2*e)^2 + tan(1/2*f*x)^2 + tan(1/2*e
)^2 + 1))*tan(1/2*f*x)^3 + 6*d*f*x*tan(1/2*f*x)*tan(1/2*e) + 6*c*f*tan(1/2*f*x)^2*tan(1/2*e) - 3*d*log(2*(tan(
1/2*f*x)^2*tan(1/2*e)^2 - 2*tan(1/2*f*x)^2*tan(1/2*e) - 2*tan(1/2*f*x)*tan(1/2*e)^2 + tan(1/2*f*x)^2 + tan(1/2
*e)^2 + 2*tan(1/2*f*x) + 2*tan(1/2*e) + 1)/(tan(1/2*f*x)^2*tan(1/2*e)^2 + tan(1/2*f*x)^2 + tan(1/2*e)^2 + 1))*
tan(1/2*f*x)^2*tan(1/2*e) + d*tan(1/2*f*x)^3*tan(1/2*e) + 6*c*f*tan(1/2*f*x)*tan(1/2*e)^2 - 3*d*log(2*(tan(1/2
*f*x)^2*tan(1/2*e)^2 - 2*tan(1/2*f*x)^2*tan(1/2*e) - 2*tan(1/2*f*x)*tan(1/2*e)^2 + tan(1/2*f*x)^2 + tan(1/2*e)
^2 + 2*tan(1/2*f*x) + 2*tan(1/2*e) + 1)/(tan(1/2*f*x)^2*tan(1/2*e)^2 + tan(1/2*f*x)^2 + tan(1/2*e)^2 + 1))*tan
(1/2*f*x)*tan(1/2*e)^2 - d*tan(1/2*f*x)^2*tan(1/2*e)^2 + 2*c*f*tan(1/2*e)^3 + d*log(2*(tan(1/2*f*x)^2*tan(1/2*
e)^2 - 2*tan(1/2*f*x)^2*tan(1/2*e) - 2*tan(1/2*f*x)*tan(1/2*e)^2 + tan(1/2*f*x)^2 + tan(1/2*e)^2 + 2*tan(1/2*f
*x) + 2*tan(1/2*e) + 1)/(tan(1/2*f*x)^2*tan(1/2*e)^2 + tan(1/2*f*x)^2 + tan(1/2*e)^2 + 1))*tan(1/2*e)^3 + d*ta
n(1/2*f*x)*tan(1/2*e)^3 + 3*d*log(2*(tan(1/2*f*x)^2*tan(1/2*e)^2 - 2*tan(1/2*f*x)^2*tan(1/2*e) - 2*tan(1/2*f*x
)*tan(1/2*e)^2 + tan(1/2*f*x)^2 + tan(1/2*e)^2 + 2*tan(1/2*f*x) + 2*tan(1/2*e) + 1)/(tan(1/2*f*x)^2*tan(1/2*e)
^2 + tan(1/2*f*x)^2 + tan(1/2*e)^2 + 1))*tan(1/2*f*x)^2 - d*tan(1/2*f*x)^3 + 6*c*f*tan(1/2*f*x)*tan(1/2*e) + 3
*d*log(2*(tan(1/2*f*x)^2*tan(1/2*e)^2 - 2*tan(1/2*f*x)^2*tan(1/2*e) - 2*tan(1/2*f*x)*tan(1/2*e)^2 + tan(1/2*f*
x)^2 + tan(1/2*e)^2 + 2*tan(1/2*f*x) + 2*tan(1/2*e) + 1)/(tan(1/2*f*x)^2*tan(1/2*e)^2 + tan(1/2*f*x)^2 + tan(1
/2*e)^2 + 1))*tan(1/2*f*x)*tan(1/2*e) - d*tan(1/2*f*x)^2*tan(1/2*e) + 3*d*log(2*(tan(1/2*f*x)^2*tan(1/2*e)^2 -
 2*tan(1/2*f*x)^2*tan(1/2*e) - 2*tan(1/2*f*x)*tan(1/2*e)^2 + tan(1/2*f*x)^2 + tan(1/2*e)^2 + 2*tan(1/2*f*x) +
2*tan(1/2*e) + 1)/(tan(1/2*f*x)^2*tan(1/2*e)^2 + tan(1/2*f*x)^2 + tan(1/2*e)^2 + 1))*tan(1/2*e)^2 - d*tan(1/2*
f*x)*tan(1/2*e)^2 - d*tan(1/2*e)^3 - 2*d*f*x + 3*d*log(2*(tan(1/2*f*x)^2*tan(1/2*e)^2 - 2*tan(1/2*f*x)^2*tan(1
/2*e) - 2*tan(1/2*f*x)*tan(1/2*e)^2 + tan(1/2*f*x)^2 + tan(1/2*e)^2 + 2*tan(1/2*f*x) + 2*tan(1/2*e) + 1)/(tan(
1/2*f*x)^2*tan(1/2*e)^2 + tan(1/2*f*x)^2 + tan(1/2*e)^2 + 1))*tan(1/2*f*x) - d*tan(1/2*f*x)^2 + 3*d*log(2*(tan
(1/2*f*x)^2*tan(1/2*e)^2 - 2*tan(1/2*f*x)^2*tan(1/2*e) - 2*tan(1/2*f*x)*tan(1/2*e)^2 + tan(1/2*f*x)^2 + tan(1/
2*e)^2 + 2*tan(1/2*f*x) + 2*tan(1/2*e) + 1)/(tan(1/2*f*x)^2*tan(1/2*e)^2 + tan(1/2*f*x)^2 + tan(1/2*e)^2 + 1))
*tan(1/2*e) + d*tan(1/2*f*x)*tan(1/2*e) - d*tan(1/2*e)^2 - 2*c*f + d*log(2*(tan(1/2*f*x)^2*tan(1/2*e)^2 - 2*ta
n(1/2*f*x)^2*tan(1/2*e) - 2*tan(1/2*f*x)*tan(1/2*e)^2 + tan(1/2*f*x)^2 + tan(1/2*e)^2 + 2*tan(1/2*f*x) + 2*tan
(1/2*e) + 1)/(tan(1/2*f*x)^2*tan(1/2*e)^2 + tan(1/2*f*x)^2 + tan(1/2*e)^2 + 1)) - d*tan(1/2*f*x) - d*tan(1/2*e
) - d)/(a^2*f^2*tan(1/2*f*x)^3*tan(1/2*e)^3 - 3*a^2*f^2*tan(1/2*f*x)^3*tan(1/2*e)^2 - 3*a^2*f^2*tan(1/2*f*x)^2
*tan(1/2*e)^3 + 3*a^2*f^2*tan(1/2*f*x)^3*tan(1/2*e) + 3*a^2*f^2*tan(1/2*f*x)^2*tan(1/2*e)^2 + 3*a^2*f^2*tan(1/
2*f*x)*tan(1/2*e)^3 - a^2*f^2*tan(1/2*f*x)^3 + 3*a^2*f^2*tan(1/2*f*x)^2*tan(1/2*e) + 3*a^2*f^2*tan(1/2*f*x)*ta
n(1/2*e)^2 - a^2*f^2*tan(1/2*e)^3 - 3*a^2*f^2*tan(1/2*f*x)^2 - 3*a^2*f^2*tan(1/2*f*x)*tan(1/2*e) - 3*a^2*f^2*t
an(1/2*e)^2 - 3*a^2*f^2*tan(1/2*f*x) - 3*a^2*f^2*tan(1/2*e) - a^2*f^2)

Mupad [B] (verification not implemented)

Time = 4.73 (sec) , antiderivative size = 183, normalized size of antiderivative = 1.24 \[ \int \frac {c+d x}{(a+a \sin (e+f x))^2} \, dx=\frac {2\,d\,\ln \left ({\mathrm {e}}^{e\,1{}\mathrm {i}}\,{\mathrm {e}}^{f\,x\,1{}\mathrm {i}}+1{}\mathrm {i}\right )}{3\,a^2\,f^2}-\frac {\left (c\,f+d\,f\,x-d\,1{}\mathrm {i}\right )\,2{}\mathrm {i}}{3\,a^2\,f^2\,\left ({\mathrm {e}}^{e\,2{}\mathrm {i}+f\,x\,2{}\mathrm {i}}-1+{\mathrm {e}}^{e\,1{}\mathrm {i}+f\,x\,1{}\mathrm {i}}\,2{}\mathrm {i}\right )}-\frac {d\,x\,2{}\mathrm {i}}{3\,a^2\,f}-\frac {d\,2{}\mathrm {i}}{3\,a^2\,f^2\,\left ({\mathrm {e}}^{e\,1{}\mathrm {i}+f\,x\,1{}\mathrm {i}}+1{}\mathrm {i}\right )}+\frac {{\mathrm {e}}^{e\,1{}\mathrm {i}+f\,x\,1{}\mathrm {i}}\,\left (c+d\,x\right )\,4{}\mathrm {i}}{3\,a^2\,f\,\left (3\,{\mathrm {e}}^{e\,1{}\mathrm {i}+f\,x\,1{}\mathrm {i}}-{\mathrm {e}}^{e\,2{}\mathrm {i}+f\,x\,2{}\mathrm {i}}\,3{}\mathrm {i}-{\mathrm {e}}^{e\,3{}\mathrm {i}+f\,x\,3{}\mathrm {i}}+1{}\mathrm {i}\right )} \]

[In]

int((c + d*x)/(a + a*sin(e + f*x))^2,x)

[Out]

(2*d*log(exp(e*1i)*exp(f*x*1i) + 1i))/(3*a^2*f^2) - ((c*f - d*1i + d*f*x)*2i)/(3*a^2*f^2*(exp(e*1i + f*x*1i)*2
i + exp(e*2i + f*x*2i) - 1)) - (d*x*2i)/(3*a^2*f) - (d*2i)/(3*a^2*f^2*(exp(e*1i + f*x*1i) + 1i)) + (exp(e*1i +
 f*x*1i)*(c + d*x)*4i)/(3*a^2*f*(3*exp(e*1i + f*x*1i) - exp(e*2i + f*x*2i)*3i - exp(e*3i + f*x*3i) + 1i))